sábado, 12 de junio de 2010

domingo, 30 de mayo de 2010

PACKET TRACER


PACKET TRACER

La enciclopedia libre
Saltar a navegación, búsqueda

Packet Tracer es la herramienta de aprendizaje y simulación de redes interactiva para los instructores y alumnos de Cisco CCNA. Esta herramienta les permite a los usuarios crear topologías de red, configurar dispositivos, insertar paquetes y simular una red con múltiples representaciones visuales. Packet Tracer se enfoca en apoyar mejor los protocolos de redes que se enseñan en el currículum de CCNA.

Este producto tiene el propósito de ser usado como un producto educativo que brinda exposición a la interfaz comando – línea de los dispositivos de Cisco para practica y aprender por descubrimiento.

Packet Tracer 5.3 es la última versión del simulador de redes de Cisco Systems, herramienta fundamental si el alumno está cursando el CCNA o se dedica al networking. En este programa se crea la topología física de la red simplemente arrastrando los dispositivos a la pantalla. Luego clickando en ellos se puede ingresar a sus consolas de configuración. Allí están soportados todos los comandos del Cisco IOS e incluso funciona el "tab completion". Una vez completada la configuración física y lógica de la red. También se puede hacer simulaciones de conectividad (pings, traceroutes, etc) todo ello desde las propias consolas incluidas.




PROTOCLOS IP/TCP

Historia del Protocolo TCP/IP La Familia de Protocolos de Internet fueron el resultado del trabajo llevado a cabo por la Agencia de Investigación de Proyectos Avanzados de Defensa (DARPA por sus siglas en inglés) a principios de los 70. Después de la construcción de la pionera ARPANET en 1969 DARPA comenzó a trabajar en un gran número de tecnologías de transmisión de datos. En 1972, Robert E. Kahn fue contratado por la Oficina de Técnicas de Procesamiento de Información de DARPA, donde trabajó en la comunicación de paquetes por satélite y por ondas de radio, reconoció el importante valor de la comunicación de estas dos formas. En la primavera de 1973, Vint Cerf, desarrollador del protocolo de ARPANET, Network Control Program(NPC) se unió a Kahn con el objetivo de crear una arquitectura abierta de interconexión y diseñar así la nueva generación de protocolos de ARPANET.

Para el verano de 1973, Kahn y Cerf habían conseguido una remodelación fundamental, donde las diferencias entre los protocolos de red se ocultaban usando un Protocolo de comunicaciones y además, la red dejaba de ser responsable de la fiabilidad de la comunicación, como pasaba en ARPANET , era el host el responsable. Cerf reconoció el mérito de Hubert Zimmerman y Louis Pouzin, creadores de la red CYCLADES, ya que su trabajo estuvo muy influenciado por el diseño de esta red.

Con el papel que realizaban las redes en el proceso de comunicación reducido al mínimo, se convirtió en una posibilidad real comunicar redes diferentes, sin importar las características que éstas tuvieran. Hay un dicho popular sobre el protocolo TCP/IP, que fue el producto final desarrollado por Cerf y Kahn, que dice que este protocolo acabará funcionando incluso entre "dos latas unidas por un cordón". De hecho hay hasta una implementación usando palomas mensajeras, IP sobre palomas mensajeras, que está documentado en RFC 1149. [1] .[2]

Un ordenador denominado router (un nombre que fue después cambiado a gateway, puerta de enlace, para evitar confusiones con otros tipos de Puerta de enlace) esta dotado con una interfaz para cada red, y envía Datagrama de ida y vuelta entre ellos. Los requisitos para estos routers están definidos en el RFC 1812. [3]

Esta idea fue llevada a la práctica de una forma mas detallada por el grupo de investigación que Cerf tenía en Stanford durante el periodo de 1973 a 1974, dando como resultado la primera especificación TCP (Request for Comments 675,) [4] Entonces DARPA fue contratada por BBN Technologies, la Universidad de Stanford, y la University College de Londres para desarrollar versiones operacionales del protocolo en diferentes plataformas de hardware. Se desarrollaron así cuatro versiones diferentes: TCP v1, TCP v2, una tercera dividida en dos TCP v3 y IP v3 en la primavera de 1978, y después se estabilizó la versión TCP/IP v4 — el protocolo estándar que todavía se emplea en Internet.

En 1975, se realizó la primera prueba de comunicación entre dos redes con protocolos TCP/IP entre la Universidad de Stanford y la University College de Londres(UCL). En 1977, se realizó otra prueba de comunicación con un protocolo TCP/IP entre tres redes distintas con ubicaciones en Estados Unidos, Reino Unido y Noruega. Varios prototipos diferentes de protocolos TCP/IP se desarrollaron en múltiples centros de investigación entre los años 1978 y 1983. La migración completa de la red ARPANET al protocolo TCP/IP concluyó oficialmente el día 1 de enero de 1983 cuando los protocolos fueron activados permanentemente.[5]

En marzo de 1982, el Departamento de Defensa de los Estados Unidos declaró al protocolo TCP/IP el estándar para las comunicaciones entre redes militares.[6] En 1985, el Centro de Administración de Internet (Internet Architecture Board IAB por sus siglas en inglés) organizó un Taller de Trabajo de tres días de duración, al que asistieron 250 comerciales promocionando así el protocolo lo que contribuyó a un incremento de su uso comercial.

Kahn y Cerf fueron premiados con la Medalla Presidencial de la Libertad el 10 de noviembre de 2005 por su contribución a la cultura Americana.[7]

Ventajas e inconvenientes [editar]El conjunto TCP/IP está diseñado para enrutar y tiene un grado muy elevado de fiabilidad, es adecuado para redes grandes y medianas, así como en redes empresariales. Se utiliza a nivel mundial para conectarse a Internet y a los servidores web. Es compatible con las herramientas estándar para analizar el funcionamiento de la red.

Un inconveniente de TCP/IP es que es más difícil de configurar y de mantener que NetBEUI o IPX/SPX; además es algo más lento en redes con un volumen de tráfico medio bajo. Sin embargo, puede ser más rápido en redes con un volumen de tráfico grande donde haya que enrutar un gran número de tramas.

El conjunto TCP/IP se utiliza tanto en redes empresariales como por ejemplo en campus universitarios o en complejos empresariales, en donde utilizan muchos enrutadores y conexiones a mainframe o a ordenadores UNIX, así como también en redes pequeñas o domésticas, y hasta en teléfonos móviles y en domótica.


PROTOCOLOS



PROTOCOLO

En informática, un protocolo es un conjunto de reglas usadas por computadoras para comunicarse unas con otras a través de una red. Un protocolo es una convención o estándar que controla o permite la conexión, comunicación, y transferencia de datos entre dos puntos finales. En su forma más simple, un protocolo puede ser definido como las reglas que dominan la sintaxis, semántica y sincronización de la comunicación. Los protocolos pueden ser implementados por hardware, software, o una combinación de ambos. A su más bajo nivel, un protocolo define el comportamiento de una conexión de hardware.


Introducción [editar]Los protocolos son reglas de comunicación que permiten el flujo de información entre equipos que manejan lenguajes distintos, por ejemplo, dos computadores conectados en la misma red pero con protocolos diferentes no podrían comunicarse jamás, para ello, es necesario que ambas "hablen" el mismo idioma. El protocolo TCP/IP fue creado para las comunicaciones en Internet. Para que cualquier computador se conecte a Internet es necesario que tenga instalado este protocolo de comunicación.

Estrategias para asegurar la seguridad (autenticación, cifrado).
Cómo se construye una red física.
Cómo los computadores se conectan a la red.
Propiedades típicas [editar]Si bien los protocolos pueden variar mucho en propósito y sofisticación, la mayoría especifica una o más de las siguientes propiedades:

Detección de la conexión física subyacente (con cable o inalámbrica), o la existencia de otro punto final o nodo.
Handshaking.
Negociación de varias características de la conexión.
Cómo iniciar y finalizar un mensaje.
Procedimientos en el formateo de un mensaje.
Qué hacer con mensajes corruptos o formateados incorrectamente (correción de errores).
Cómo detectar una pérdida inesperada de la conexión, y qué hacer entonces.Ejemplos de protocolos de red [editar]Capa 1: Nivel físico
Cable coaxial o UTP categoría 5, categoria 5e, categoria 6, categoria 6a Cable de fibra óptica, Cable de par trenzado, Microondas, Radio, RS-232.
Capa 2: Nivel de enlace de datos
Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, ATM, HDLC.,cdp
Capa 3: Nivel de red
ARP, RARP, IP (IPv4, IPv6), X.25, ICMP, IGMP, NetBEUI, IPX, Appletalk.
Capa 4: Nivel de transporte
TCP, UDP, SPX.
Capa 5: Nivel de sesión
NetBIOS, RPC, SSL.
Capa 6: Nivel de presentación
ASN.1.
Capa 7: Nivel de aplicación
SNMP, SMTP, NNTP, FTP, SSH, HTTP, SMB/CIFS, NFS, Telnet, IRC, POP3, IMAP, LDAP.
Protocolos comunes [editar]IP (Internet Protocol)
UDP (User Datagram Protocol)
TCP (Transmission Control Protocol)
DHCP (Dynamic Host Configuration Protocol)
HTTP (Hypertext Transfer Protocol)
FTP (File Transfer Protocol)
Telnet (Telnet Remote Protocol)
SSH (Secure Shell Remote Protocol)
POP3 (Post Office Protocol 3)
SMTP (Simple Mail Transfer Protocol)
IMAP (Internet Message Access Protocol)
SOAP (Simple Object Access Protocol)
PPP (Point-to-Point Protocol)
STP (Spanning Tree Protocol)
Terminación de la sesión y/o conexión.


TOPOLOGIAS




TOPOLOGIAS



Bus: esta topología permite que todas las estaciones reciban la información que se transmite, una estación trasmite y todas las restantes escuchan.

Ventajas: La topologia Bus requiere de menor cantidad de cables para una mayor topologia; otra de las ventajas de esta topologia es que una falla en una estación en particular no incapacitara el resto de la red.

Desventajas: al existir un solo canal de comunicación entre las estaciones de la re
d, si falla el canal o una estación, las restantes quedan incomunicadas. Algunos fabricantes resuelven este problema poniendo un bus pararelo alternativo, para casos de fallos o usando algoritmos para aislar las componentes defectuosas.

Existen dos mecanismos para la resolución de conflictos en la transmisión de datos:

CSMA/CD: son redes con escucha de colisiones. Todas las estaciones son consideradas igual, por ello compiten por el uso del canal, cada vez que una de ellas desea transmitir debe escuchar el canal, si alguien está transmitiendo espera a que termine, caso contrario transmite y se queda escuchando posibles colisiones, en este último espera un intervalo de tiempo y reintenta nuevamente.

Token Bus:Se usa un token (una trama de datos) que pasa de estación en estación en forma cíclica, es decir forma un anillo lógico. Cuando una estación tiene el token, tiene el derecho exclusivo del bus para transmitir o recibir datos por un tiempo determinado y luego pasa el token a otra estación, previamente designada. Las otras estaciones no pueden transmitir sin el token, sólo pueden escuchar y esperar su turno. Esto soluciona el problema de colisiones que tiene el mecanismo anterior.

Redes en Estrella

Es otra de las tres principales topologías. La red se une en un único punto, normalmente con control centralizado, como un concentrador de cableado.

Redes Bus en Estrella

Esta topología se utiliza con el fin de facilitar la administración de la red. En este caso la red es un bus que se cablea físicamente como una estrella por medio de concentradores.

Redes en Estrella Jerárquica

Esta estructurade cableado se utiliza en la mayor parte de las redes locales actuales, por medio de concentradores dispuestos en cascada para formar una red jerárquica.

Redes en Anillo

Es una de las tres principales topologías. Las estaciones están unidas una con otra formando un círculo por medio de un cable común. Las señales circulan en un solo sentido alrededor del círculo, regenerándose en cada nodo.

Ventajas: los cuellos de botellas son muy pocos frecuentes

Desventajas: al existir un solo canal de comunicación entre las estaciones de la red, si falla el canal o una estación, las restantes quedan incomunicadas. Algunos fabricantes resuelven este problema poniendo un canal alternativo para casos de fallos, si uno de los canales es viable la red está activa, o usando algoritmos para aislar las componentes defectuosas. Es muy compleja su administración, ya que hay que definir una estación para que controle el token.



TIPOS DE REDES
Existen varios tipos de redes, los cuales se clasifican de acuerdo a su tamaño y distribución lógica. Clasificación segun su tamaño

Las redes PAN (red de administración personal) son redes pequeñas, las cuales están conformadas por no más de 8 equipos, por ejemplo: café Internet.

CAN: Campus Area Network, Red de Area Campus . Una CAN es una colección de LANs dispersadas geográficamente dentro de un campus (universitario, oficinas de gobierno, maquilas o industrias) pertenecientes a una misma entidad en una área delimitada en kilometros. Una CAN utiliza comúnmente tecnologías tales como FDDI y Gigabit Ethernet para conectividad a través de medios de comunicación tales como fibra óptica y espectro disperso.

Las redes LAN (Local Area Network, redes de área local) son las redes que todos conocemos, es decir, aquellas que se utilizan en nuestra empresa. Son redes pequeñas, entendiendo como pequeñas las redes de una oficina, de un edificio. Debido a sus limitadas dimensiones, son redes muy rápidas en las cuales cada estación se puede comunicar con el resto. Están restringidas en tamaño, lo cual significa que el tiempo de transmisión, en el peor de los casos, se conoce. Además, simplifica la administración de la red.
Suelen emplear tecnología de difusión mediante un cable sencillo (coaxial o UTP) al que están conectadas todas las máquinas. Operan a velocidades entre 10 y 100 Mbps.

Características preponderantes:

•Los canales son propios de los usuarios o empresas.
•Los enlaces son líneas de alta velocidad.
•Las estaciones están cercas entre sí.
•Incrementan la eficiencia y productividad de los trabajos de oficinas al poder compartir información.
•Las tasas de error son menores que en las redes WAN.
•La arquitectura permite compartir recursos.

LANs mucha veces usa una tecnología de transmisión, dada por un simple cable, donde todas las computadoras están conectadas. Existen varias topologías posibles en la comunicación sobre LANs, las cuales se verán mas adelante.

Las redes WAN (Wide Area Network, redes de área extensa) son redes punto a punto que interconectan países y continentes. Al tener que recorrer una gran distancia sus velocidades son menores que en las LANaunque son capaces de transportar una mayor cantidad de datos. El alcance es una gran área geográfica, como por ejemplo: una ciudad o un continente. Está formada por una vasta cantidad de computadoras interconectadas (llamadas hosts), por medio de subredes de comunicación o subredes pequeñas, con el fin de ejecutar aplicaciones, programas, etc.

Una red de área extensa WAN es un sistema de interconexión de equipos informáticos geográficamente dispersos, incluso en continentes distintos. Las líneas utilizadas para realizar esta interconexión suelen ser parte de las redes públicas de transmisión de datos.

Las redes LAN comúnmente, se conectan a redes WAN, con el objetivo de tener acceso a mejores servicios, como por ejemplo a Internet. Las redes WAN son mucho más complejas, porque deben enrutar correctamente toda la información proveniente de las redes conectadas a ésta.

Una subred está formada por dos componentes:

Líneas de transmisión: quienes son las encargadas de llevar los bits entre los hosts.

Elementos interruptores (routers): son computadoras especializadas usadas por dos o más líneas de transmisión. Para que un paquete llegue de un routera otro, generalmente debe pasar por routers intermedios, cada uno de estos lo recibe por una línea de entrada, lo almacena y cuando una línea de salida está libre, lo retransmite.

INTERNET WORKS: Es una colección de redes interconectadas, cada una de ellas puede estar desallorrada sobre diferentes software y hardware. Una forma típica de Internet Works es un grupo de redes LANs conectadas con WANs. Si una subred le sumamos los host obtenemos una red.

El conjunto de redes mundiales es lo que conocemos como Internet.

Las redes MAN (Metropolitan Area Network,redes de área metropolitana) , comprenden una ubicación geográfica determinada "ciudad, municipio", y su distancia de cobertura es mayor de 4 Kmts. Son redes con dos buses unidireccionales, cada uno de ellos es independiente del otro en cuanto a la transferencia de datos. Es básicamente una gran versión de LAN y usa una tecnología similar. Puede cubrir un grupo de oficinas de una misma corporación o ciudad, esta puede ser pública o privada. El mecanismo para la resolución de conflictos en la transmisión de datos que usan las MANs, es DQDB.

DQDB consiste en dos buses unidireccionales, en los cuales todas las estaciones están conectadas, cada bus tiene una cabecera y un fin. Cuando una computadoraquiere transmitir a otra, si esta está ubicada a la izquierda usa el bus de arriba, caso contrario el de abajo.

Redes Punto a Punto.En una red punto a punto cada computadora puede actuar como cliente y como servidor. Las redes punto a punto hacen que el compartir datos y periféricos sea fácil para un pequeño grupo de gente. En una ambiente punto a punto, la seguridad es difícil, porque la administración no está centralizada.

Redes Basadas en servidor. Las redes basadas en servidor son mejores para compartir gran cantidad de recursos y datos. Un administradorsupervisa la operación de la red, y vela que la seguridad sea mantenida. Este tipo de red puede tener uno o mas servidores, dependiendo del volumende tráfico, número de periféricos etc. Por ejemplo, puede haber un servidor de impresión, un servidor de comunicaciones, y un servidor de base de datos, todos en una misma red.

Clasificación según su distribución lógica

Todos los ordenadores tienen un lado cliente y otro servidor: una máquina puede ser servidora de un determinado serviciopero cliente de otro servicio.

Servidor. Máquina que ofrece información o servicios al resto de los puestos de la red. La clase de información o servicios que ofrezca determina el tipo de servidor que es: servidor de impresión, de archivos, de páginas web, de correo, de usuarios, de IRC (charlas en Internet), de base de datos...

Cliente. Máquina que accede a la información de los servidores o utiliza sus servicios. Ejemplos: Cada vez que estamos viendo una página web (almacenada en un servidor remoto) nos estamos comportando como clientes. También seremos clientes si utilizamos el servicio de impresión de un ordenador remoto en la red (el servidor que tiene la impresora conectada).

Todas estas redes deben de cumplir con las siguientes características:
•Confiabilidad "transportar datos".
•Transportabilidad "dispositivos".

•Gran procesamiento de información.
y de acuerdo estas, tienen diferentes usos, dependiendo de la necesidad del usuario, como son:

•Compañías - centralizar datos.
•Compartir recursos "periféricos, archivos, etc".
•Confiabilidad "transporte de datos".

•aumentar la disponibilidad de la información.
•Comunicación entre personal de las mismas áreas.
•Ahorro de dinero.
•Home Banking.
•Aportes a la investigación "vídeo demanda,line T.V,Game Interactive".



HISTORIA DE REDES



HISTORIA DE REDES

En 1984 América empezó a avanzar hacia un uso más general del TCP/IP, y se convenció al CERNET para que hiciera lo mismo. El CERNET, ya convertido, permaneció aislado del resto de Internet, formando una pequeña Internet interna

En 1988 Daniel Karrenberg, del Instituto Nacional de Investigación sobre Matemáticas e Informática de Ámsterdam, visitó a Ben Senegal, coordinador TCP/IP dentro del CERN; buscando por consejo sobre la transición del lado europeo de la UUCP Usenet network (de la cual la mayor parte funcionaba sobre enlaces X.25) a TCP/IP. En 1987, Ben Segal había hablado con Len Bosack, de la entonces pequeña compañía Cisco sobre routers TCP/IP, y pudo darle un consejo a Karrenberg y reexpedir una carta a Cisco para el hardware apropiado. Esto expandió la porción asiatica de Internet sobre las redes UUCP existentes, y en 1989 CERN abrió su primera conexión TCP/IP externa.[4] Esto coincidió con la creación de Réseaux IP Européens (RIPE), inicialmente un grupo de administradores de redes IP que se veían regularmente para llevar a cabo un trabajo coordinado. Más tarde, en 1992, RIPE estaba formalmente registrada como una cooperativa en Ámsterdam.

Al mismo tiempo que se producía el ascenso de la interconexión en Europa, se formaron conexiones hacia el ARPA y universidades australianas entre sí, basadas en varias tecnologías como X.25 y UUCPNet. Éstas estaban limitadas en sus conexiones a las redes globales, debido al coste de hacer conexiones de marcaje telefónico UUCP o X.25 individuales e internacionales. En 1990, las universidades australianas se unieron al empujón hacia los protocolos IP para unificar sus infraestructuras de redes. AARNet se formó en 1989 por el Comité del Vice-Canciller Australiano y proveyó una red basada en el protocolo IP dedicada a Australia.

En Europa, habiendo construido la JUNET (Red Universitaria canadesa) una red basada en UUCP en 1984 Japón continuó conectándose a NSFNet en 1989 e hizo de anfitrión en la reunión anual de The Internet Society, INET'92, en Kōbe. Singapur desarrolló TECHNET en 1990, y Thailandia consiguió una conexión a Internet global entre la Universidad de Chulalongkorn y UUNET en 1992